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1. Introduction

In fall 2003 T. Hughes of MRC used a full EM simulation code (LSP) to show that the
electric field stress distribution near the outer radius of the longitudinal gaps between the
four Metglas induction cores is very nonuniform in the original design of the DARHT-2
accelerator cells. In this note we derive a simple model of the electric field distribution in
the induction core region to provide physical insights into this result.  The starting point
in formulating our model is to recognize that the electromagnetic fields in the induction
core region of the DARHT-2 accelerator cells should be accurately represented within a
quasi-static approximation because the timescale for the fields to change is much longer
than the EM wave propagation time. The difficulty one faces is the fact that the electric
field is a mixture of both a “quasi-magnetostatic field” (having a nonzero curl, with Bdot
the source) and a “quasi-electrostatic field” (the source being electric charges on the
various metal surfaces). 

We first discuss the EM field structure on the “micro-scale” of individual tape windings
in Section 2. The insights from that discussion are then used to formulate a
“macroscopic” description of the fields inside an “equivalent homogeneous tape wound
core region” in Section 3. This formulation explicitly separates the nonlinear core
magnetics from the quasi-electrostatic components of the electric field. In Section 4 a
physical interpretation of the radial dependence of the electrostatic component of the
electric field derived from this model is presented in terms of distributed capacitances,
and the voltage distribution from gap to gap is related to various “equivalent” lumped
capacitances. 

Analytic solutions of several simple multi-core cases are presented in Sections 5 and 6 to
help provide physical insight into the effect of various proposed changes in the geometri-
cal parameters of the DARHT-2 accelerator cell. Our results show that over most of the
gap  between adjacent cores there will be near equipartition of the voltages BUT there
will be a region near the outer radius of each core where the voltages (and more
importantly, the electric field stress) can deviate significantly from equipartition. In
Section 7 we apply our results to some multicore measurements form the LBNL test
stand and make some predictions for the general DARHT-2 accelerator cell
configuration.

2. A "micro-picture" of the core fields

The DARHT-2 cores are composed of 4"-wide Metglas tape with a nominal thickness of
0.8 mils. The tape is wound with mylar insulation of nominal thickness 0.2 mils
separating adjacent windings. Inside the Metglas, the electric field normal to the interface



(x direction in a planar approximation - x becomes r later) is negligible. This field is
shorted out by the Metglas conductivity ( −1≈ 1.25×10−6 ohm-meters) on the
timescale / for surface charges to build up on the interface. 

The magnetizing current flowing around the entire core creates an Hθ  field ( Hy  in a
planar approximation) that is constant in both z and x throughout each mylar sheet (see
Fig. 1). We first assume the magnetic skin depth is much larger than the Metglas
thickness d M , and take both Hy  and B y=BM  as constant throughout each Metglas tape
winding as well. Inside the each Metglas winding, Maxwell's equations require

                                          
∂E z , M

∂ x
=
∂BM

∂ t
≡ ḂM               (2.1)

The net current in the z direction (across the tape) in any Metglas tape section must be
very small --- otherwise the free charge at the ends of the tape would rapidly build up. 

Taking x=0 at the center of a selected piece of tape, we then have

                                                  E z=ḂM x                         (2.2)

d I

 
dM

                      
 
 

                                                        
Since this solution to very high order is exactly the same as in adjacent Metglas layers, Ez

must vary with x in the periodic fashion shown in Fig. 2 from layer to layer. Here a linear
variation in x through the mylar is presumed. In the mylar (subscript I), where the
magnitude of B is very small in comparison with its value in the Metglas, curl E is
approximately zero. Consequently, 

                                        
∂E x , I

∂ z
=
∂E z , I

∂ x
=−

d M

d I

ḂM                  (2.3)

Fig. 1 – Adopted planar geometry 
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where E x , I is the electric field in the mylar normal to the interface.

At the axial ends of each inductive core, the "smooth" radial electric field in the gap
region between adjacent cores, or between a core and an end plate, should be set equal to
the mean value of the x-directed field through the layers of Metglas and mylar tape,

               〈E x 〉 = E x , I ×
d I

d Md I

                         (2.4)

                                                                     
Using Eq. (2.3), we have

 
∂〈E x 〉
∂ z
=−

d M

d Md I

ḂM =− p f ḂM        (2.5)

with the last equality defining the "packing factor" p f . Since the magnetic field in any
individual Metglas winding layer is constant in z,  〈E x 〉 must vary linearly in z across
the layer width w.

                                              Ez

                                               BM
' dM / 2

                             
                                                                                 d I  d M /2  
                                                                                                        x
                   − dM / 2                                     dM / 2

                                                − BM
' dM / 2

                                  Fig. 2     Axial electric field vs. x

In moving over to a "macro" description of the EM fields, note that the maximum value
of Ez  (see Fig. 2) is of order dM / w ~ 10−4  compared to Ex . We can therefore safely
ignore the z-directed electric field in a "macro-picture", even though it is a critical factor
in the "micro-picture" of the rapidly alternating fields across the layers.



Also note that in a macroscopic description, the equivalent radial dielectric constant for
calculating the radial displacement current using the mean radial electric field (Eq. 2.4) is

                                    R =
I

1−p f

                                              (2.6)

We have implicitly modeled the tape sections as individually-nested cylinders instead of
the actual continuous helical winding of ~20,000 layers. This approximation is valid as
long as the total radial displacement current is much larger than the real current in the
helical windings. Near the outer radius of the DARHT-2 cores, the layer-to-layer
capacitance across the 0.2 mil mylar sheet  is ~2.5 microfarads. The resistance of one turn
of the Metglas tape at the outer radius is about 3 ohms, and this impedance alone is
sufficient to make the real current much less than the “capacitive” current on the 1-2
microsecond timescale. Estimating an inductive component of the layer to layer
impedance is more difficult, since the axial flux between each layer is created by the sum
of all the layers azimuthal current (i.e., the mutual inductance must be included). A crude
estimate of the “equivalent” inductive impedance retarding the real current flow shows
that it is 100-1,000 times larger than the resistive impedance when   is large, so the real
helical current is insignificant in DARHT-2. We note  that in the small 7” radius core
experiments at LBNL, a similar estimate of real current indicates that it may not be
negligible over 2-3 microseconds when  is small.

We now consider, as a perturbation, the variations in magnetic field across the Metglas
from the "eddy currents". Adopting Eq. 2.2 as a first approximation to the axial electric
field, the magnetic field variation follows from Maxwell's equations as
 

                               
∂H y

∂ x
= E z≈  ḂM x                  (2.7)

The solution is

                     H y=H y0 { 1 ḂM
2 H y0

 x2−
d M

2

4  }           (2.8)

We define a nonlinear, time dependent permeability as

                                     
 ≡

ḂM

∂H y

∂ t

                                (2.9)

and a magnetizing current rate-of-rise timescale 

                                     
 ≡

H y

∂H y

∂ t

                               (2.10)



The variation in magnetic field across the Metglas layer is then

                            
H y

H y0

≈
d M

2

8
                                              (2.11)

Using a risetime of 2 microseconds, and a relatively high value of normalized
permeability ( /0~103 ), the variation is about 2.5%. These eddy-current effects can
of course be incorporated into the model of the nonlinear magnetic response of the
Metglas tape.
 

3. An Analytic Core Model

In this and the next few sections we present a simple model describing how the core
voltages are distributed both radially within a given core and from core to core in a multi-
core cell. First we will examine the simple but heuristic case of a single core cell,
followed by the more complicated situations of two or more cores in the following
sections.

The magnetic fields in the core region are basically magnetostatic in character because
the large inductance constrains the rate of rise of the magnetizing current. In our
formulation we assume that the macroscopic (mean) azimuthal magnetic field
B= p f BM  in any one core is a function of r and t only. Otherwise, one is free to use
arbitrary models of the nonlinear magnetization including eddy currents, etc., as inputs.

Since in an equivalent homogeneous core model E z = E= 0 , Maxwell’s equations
require ∂Er /∂ z =−Ḃr , t  . At a given radius, B within the core is independent of
z . Then we may separate Er into a term which scales linearly with z and a z-independent
term

                      Er r , z , t  =−z Ḃr , t   Er
c r , t                                     (3.1)

and define z=0 to lie at the longitudinal middle of the core.

We now introduce three separate voltage quantities: Ψ, the “full” voltage; V, the
“inductive” voltage; and Φ, the “electrostatic” voltage. For each core, let us then define
the “left” full voltage Lr  and “right” full voltage R r  as
 

        Lr ≡−∫a

r
dr ' Er r ' , z=−w /2                    and

        R r ≡−∫a

r
dr ' E r r ' , z=w /2                                                  (3.2)



where Er is the “total” electric field (the sum of inductive and electrostatic components)
and a is the core inner radius. We then define the “inductive” voltage V and the
“electrostatic” voltage Φ as

      V r =−∫a

r
dr ' ER inductive  =−w ×∫a

r
dr ' Ḃ                                  (3.3a)

      r  ≡ −∫a

r
dr ' Er

c r ' , t                                                                      (3.3b)

Therefore,

      Lr =r   V r  /2                                                                         (3.4a)
      R r =r  − V r  /2                                                                         (3.4b)

Note that Lr −R r =V r   which is equivalent to −∫ E⋅dl presuming that E z

is identically zero along the integral path (i.e. a Metglas layer). Moreover, we have not
placed any conditions upon either V(r) or Φ(r). This permits V(r) to handle a Ḃ which
varies significantly with r as would be true for a b/a ratio exceeding 2 (as in DARHT-2)
or due to saturation effects.

The source term for Φ will be the free charges which redistribute themselves on each
Metglas layer to short out both the internal E  and E z .  Applying Gauss's law (see Fig.
3) to the fields surrounding one composite layer of Metglas + Mylar, we have

∮ D⋅d A=Q=0 . The net charge on the left and right edge of the Metglas facing the

oil-filled gap is 2 r dT G  〈E z , R〉 − 〈E z , L〉  where G is the dielectric constant for
the oil, dT≡d Md I and the angle brackets mean a “coarse” averaging many dT

thicknesses away in z from the edge of the core. The net charge on the upper and lower
radial surfaces of a Metglas layer is

    2I ∫−w /2

w /2
{ ru E r ru , z −r l Er r l , z  } dz =−2wI dT

∂
∂ r { r dT

d I

∂
∂ r }     (3.5)

where ru , l≡r±dT /2 and the radial derivative of Φ refers to the average gradient from
the middle of one mylar layer to the next (which is smaller than the peak gradient by a
factor of 1−p f  --- see Eq. 2.4).  Solving, we find the important result

Fig. 3 Electric
fields around
Metglas-mylar
interface
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                                         (3.6)

where R≡I / 1−p f  and E z≡E z , R−E z , L . 

To determine a final equation for Φ, we must relate it to E z . For the single core case
this is rather straight-forward.  As shown in Fig. 4, there is a drive plate to the right of the
inductive core with a voltage VD . Both to the left and to the top of the core there is a
“ground” plane to which we assign a zero voltage. Everywhere outside the core, E is curl-
free and thus we may define E=−∇ . Consequently, for gap widths 1,2≪b−a

              E z , Lr =−
Lr 
1

=−V r 
21

−
r 
1

                                 (3.7)

              E z , R r =
R r 
2

=− V r 
22


r 
2

                                (3.8)

Using these results in Eq. 3.6,  we find

          
1
r
∂
∂ r

r
∂
∂ r
− 22= 22 2−1

12
 V r 

2
                           (3.9)

where we have defined

2≡
G

R

×
12

2 w12

≡ ld
−2

.

Equation 3.9 has an
homogenous solution involving
a linear combination of the
modified Bessel functions
I 02r  and K 02r  .

The lower boundary condition at
r=a is Φ=0 (presuming the
inner core radius is attached to a
good conductor).  The outer
boundary condition at r=b is

that DR must be  continuous
(i.e. the outer metallic band surrounding the core must have a net charge of zero).  

The inhomogeneous solution for Φ is non-zero only if the RHS of Eq. 3.9 (which we now
denote as -S(r) ) is non-zero. The appropriate Green's function which satisfies the radial
boundary conditions is

ϕ=0

∆
T

ϕ=V
D

V
T

ϕ=V
D

 +Ψ
R
(r)

∆2∆1
ϕ=0

ϕ=Ψ
L
(r)

Fig. 4 -  Illustrative cartoon showing the voltage configuration of
a single core and the surrounding conducting surfaces.



       G r , r '  = r ' [ I 02 r◀ − K 02r◀
I 02a
K 02a ] K 02r▶             (3.10)

where r◀=minr , r '  and r▶=max r , r '  .  Consequently.

     r =∫a

r
dr ' G r , r '  S r '   C H  I 0 2 r 

I 02a
−

K 02 r 
K 02a              (3.11)

If for illustrative purposes we presume that the Metglas core is placed symmetrically in z
between the surrounding conducting plates with 1=2≡G , then S r ≡0 and
2=G / R wG . Then we need only to satisfy the upper boundary condition on Dr

at r=b by adding the appropriate homogenous solution. If the radial separation T

between the outer edge of the core and the surrounding (conducting) metal enclosure is
small compared to both b and w, Dr≈ G [V D /2b] /T . We make further
headway by realizing the effective decay length is quite short relative to the core radial
dimensions for the DARHT-2 cell:

         ld /2= [ 3.2 /1−0.75
2.3

4×0.25
2 ]1 /2 ≈ 1.7 inches                  (3.12)

where we have presumed a packing fraction p f=0.75 , a dielectric constant for oil
G=2.3 , a dielectric constant for mylar I=3.2 and a gap spacing G=0.25 inches.

Consequently, we may use the large argument approximation for the Bessel functions
with I 0x ≈ ex /2 x and K 0x ≈ e−x /2 x . Thus, DR interior≈−2Rb .
Solving for b we find

   b ≈−
V D

2
× 1 2R T

G ld

−1

  and   V T ≈
V D

2
× 1 G ld

2 R T

−1

     (3.13)

For large T / ld , the potential at the top of the Metglas approaches the “normal” value
of V D /2 , i.e. exactly halfway between the drive and ground potential. For T≪ld , the

potential at the top of the core VT ~ 2 V D T / ld and is thus much closer to ground
potential (due to the large capacitance between the outer band and the surrounding metal
can). Numerically for DARHT-2, T≈1.0 inches, 2 R T / G ld ≈ 3.3 , and we
predict V T ≈0.38V D . The predicted longitudinal electric field stress (for this single core
example) is ~60% higher at outer right edge of the core as compared with the outer left
region.

Due to the exponential dependence of Φ with r, in a distance of less than 10 inches from
the outer radius it drops by more than a factor of 100 and the longitudinal electric field
stress at the left and right sides of the core are nearly equal (again presuming 1=2 ).
As one will see from later examples, this rapid convergence with decreasing r to equal



longitudinal electric field stress division is a general property of the core voltage solution
so long as b−a≫1 . This has the immediate consequence that any enhanced
breakdown problems are far more likely to occur near the outer few inches of the core
than in the  inner radial regions.

4. Physical Interpretations and Equivalent Circuits

The analysis in Section 3 shows that, in
the case of a single core with equal gap
spacings, the only source for the
electrostatic potential r  inside the
core region is the free charge on the
inside of the outer band ( ≡q ). Since
in normal operation the outer band is
“floating”, the net free charge on it is
zero; the charge on the outside of the
outer band must equal -q.

A physical interpretation of the
exponentially decaying character of the
homogeneous solution for r  in Eq.
(3.9) can be obtained from an analysis
of the distributed circuit model shown
in Fig. 5. If we consider a layer of the
core between r and r+dr in Fig. 5, the
net radial displacement current passing
through the core at this radius r is given by

                I displacement =−
2rwR

 r
∂
∂ t
[r r  − r  ]                             (4.1)

This defines an effective “core capacitance” RC  of that layer as given in Fig. 5. The radial
displacement current through the core decreases as we move inward since it is “shunted
out” each side through the gap capacitances at each layer given by CG 1,2  in Fig. 5. If we
write down the differential equation for the electrostatic voltage r  that follows from
this distributed circuit model, we obtain the homogeneous version of Eq. (3.9).

The approximate solution for the electrostatic voltage when l1≪ b−a with l1≡ld / 2
is
                            r ≈ b exp −b−r  / l1                                             (4.2)

Since the total electrostatic voltage drop from the outer band to ground is b , it makes
sense to define an “effective core-gap capacitance” as

                                  q = C eff b                                                                (4.3)

Fig. 5 – Distributed circuit model for  the electrostatic
component of the cell voltage 



Relating the total charge q on the inside of the outer band to 1( ) ( ) /r RD b b lε= − Φ , we
have

                                    C eff = 2R
bw
l1

                                               (4.4)

Note that for the case of with no applied inductive voltage, we could set up an
electrostatic potential of the same form as Eq. (4.2) inside the core by connecting a pulsed
(or AC) generator between the outer band on the core and ground. Indeed, for T∞ ,
measurement of the AC current flowing into the outer band from this generator provides a
direct measurement of effC  . This measurement has recently been made on the LBNL
small core test stand and will be reported elsewhere. 

With an inductive voltage applied and equal core-to-core gap spacings, the voltage on the
outer band is 

                                      V T =
V D

2
b                                          (4.5)

The equivalent lumped circuit model shown in Fig. 6 can therefore be used to calculate
the voltage on the outer band, where 

                                        
2

T T

T

bw
C

πε=
∆                                                (4.6)

is defined as the capacitance of the top band to the outer metal cylinder shown in Fig. 4.
From this circuit we have

                                        
/ 2

1 /
D

T

T eff

V
V

C C
=

+                                             (4.7)

in agreement with Eq. (3.13). This illustrates the physical point that the deviation from a
simple equal division of inductive voltage across the two gaps is due to the capacitance of
the outer band to the outer wall at ground potential. It also shows that it is the ratio of this
capacitance to an “effective core-gap” capacitance that enters into the voltage
distribution. We note that a similar capacitive model was previously employed by L.
Schlitt et al. (see PSI-FR-243-3) in work modeling the voltage division in the Hermes-III
accelerator cell.

The same physical concepts will clearly be involved in more general cases. As one
generalization that provides further insight, consider a single core  cell with unequal gap
spacings. In addition to the homogeneous solution for   from Eq. (3.9), we now need a



particular solution ( )p rΦ . If the scale length for radial

variations in ( )V r  are long compared to 1l , an

approximate solution for ( )p rΦ  is

             p r  ≈ 1−2

12
 V r 

2
                   (4.8)

As before, the homogeneous solution in Eq. (4.2) will be
a good approximation as long as  l1≪b−a . Several 1l

scale lengths inward from the top band, therefore, the left
and right “full voltages” will contain only ( )p rΦ  and

( )V r  . From Eqs. (3.4a) and (3.4b), using the above
approximation, we find that the electric field stress in
both gaps is the same in this region well inside the outer
band, 

               , ,

1 2

( )
( ) ( )z L z R

V r
E r E r≈ ≈ −

∆ + ∆                 (4.9)

In fact, inspection of Eq. (3.6) shows that this equipartition of stress is a general result
(applicable even to multi-core cases as we discuss later in Sections 5 and 6) whenever the
radial variation of  Φ  is slow compared to the scale length dl  (or its appropriate
generalization in multi-core cases). 

Near the top band, the gradient in ( )rΦ  will be dominated by the homogenous solution,

so the physical arguments given above that led to the identification of effC  remain valid.
We find that with unequal gaps the lumped circuit model in Fig. 6 and the expression for
the voltage on the outer band in Eq. (4.7) are the same except for the replacement of

/ 2DV  by the quantity  1

12
 V D  . 

5. Two Core Solution

In going from one to two cores, we must introduce some new notation. Let V1 and V2 be
the inductive voltages of cores #1 and #2, respectively, with the total inductive voltage
being V D=V 1V 2 . Similarly 1 and 2 will be the z-independent electrostatic
potential in the two cores. Let 2 now be the longitudinal separation between the two
cores and 3 be the separation between core #2 and the drive plane. We also define the
longitudinal electric field in the gaps between the cores:

Fig. 6.  Lumped circuit model for the
voltage distribution



       1 E z ,1=−  V 1r 
2
1r                                                (5.1a)

       2 E z ,2=−  V 2r −V 1r 
2

2r −1r                       (5.1b)

       3 E z , 3=−
V 2r 

2
2r                                                     (5.1c)

Following the same mathematical development as in the single core case for relating the
radial dependence of Φ in each core to the jump in Dz from side of the core  to the other,
one may use Eq. (3.6) to show that there are two natural eigenvectors:  the sum 12

and the difference 1−2 . The former is related to the sum E z ,1E z , 3 :

1
r
∂
∂ r

r
∂ 12 
∂r

− 212 = 
2 { 3 V 1r −1V 2r 

2 

d 1r  −2r 

 }
(5.2) 

where 2≡
G

R

×


w13

,  2 ≡13  and  2d≡3−1 . The latter similarly

involves the “three-point” electric field operator −2 E z ,2E z ,1E z , 3 . However, the
resulting equation is rather messy (and uninformative) unless we make the assumption of
equal gap spacing between the cores: 1=2=3≡G .  Then we find

     
1
r
∂
∂ r

r
∂1−2
∂ r

− 3 21−2=− 
2 { V 1r V 2r 

2 }           (5.3)

indicating that the eigenvalues for the sum and difference eigenvectors are  and 3 
respectively. 

At radii r which are a couple decay lengths or more smaller than b, one may neglect the
radial derivative term on the LHS of Eq. (5.2) to find the (inhomogeneous) solution

                    1−2≈ [V 1r V 2r ] / 6                                              (5.4)

Then after applying  Eq. (3.14), we obtain 1r =−2r  = [V 1r V 2r ] /12 . For
V 1r =V 2r  ≡ V Dr  / 2 , the electric fields in each of the three gaps have the

identical value
 

        E z ,1r =E z ,2r =E z , 3r  =−
V Dr 
3G

                                         (5.5) 



indicating an “equipartition” of the total (inductive + electrostatic) voltage between the
two cores. 

To satisfy the boundary condition for a continuous DR  at the top of each core, we must
add an additional homogenous solution H to  each of the inhomogeneous solutions.
However, we defer this calculation until the next section.

6. General Multicore Solution

For the general case of multiple cores (i.e. N > 1), we presume each core n has an
inductive voltage Vn together with an electrostatic voltage n which satisfy the
appropriate boundary conditions. To simplify the analysis, let us presume that all of the
longitudinal gaps spacings between adjacent cores have the identical value of G . For
each individual core, we then have

1
r
∂
∂ r

r
∂ n

∂ r
=2 { 2n −n−1−n1

1
2

V n−1r  −
1
2

V n1r  }        (6.1)

with κ defined as before and V 0≡0 and V N1≡0 . 

To solve the coupled problem, we note that the first three terms on the RHS of the above
equation be rewritten as a tridiagonal matrix (which we denote as M):

ld
2 ∇ r

2 [ 1

2

3

⋮
N−2

N−1

N

] = [ 2 −1 0 0 ⋯ 0 0 0
−1 2 −1 0 ⋯ 0 0 0
0 −1 2 −1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 −1 2 −1 0
0 0 ⋯ ⋯ 0 −1 2 −1
0 0 ⋯ ⋯ 0 0 −1 2

] [ 1

2

3

⋮
N−2

N−1

N

] 1
2 [

−V 2

V 1−V 3

V 2−V 4

⋮
V N−3−V N−1

V N−2−V N

V N−1

]
(6.2)

with each Φ and V being functions of r. 

We need to determine the eigenvectors pi ≡ p1
i  , p2

i  ,⋯pN−1
i  , pN

i  and eigenvalues
i   which satisfy det M−2 = 0  and M−i

2 ⋅pi=0 . Here p j
i  is defined as

the value of the voltage on cell j corresponding to the ith eigenvector. For N=1, there is
one eigenvalue 2=2 . For N=2, the requirement that the determinant 2−22− 1≡D2

equal zero results in eigenvalues of 1 and 3 for 2 , agreeing with what we found in the

last section. The corresponding (orthonormal) eigenvectors are  1

2
,

1

2   and

 1

2
,
−1

2  .   For N=3, det M−2 = 2−2 [2−2 2−2] ≡D3 results in  three



eigenvalues 2−2 ,2 ,22 for 2 . The corresponding orthonormal eigenvectors
are:

                1
2

,
1

2
,
1
2  ,  1

2
,0 ,− 1

2  ,  1
2

,− 1

2
,
1
2 

To determine the eigenvalues for larger N, one can use the recursion relation for the
determinants
                                       DN = 2−

2DN−1−DN−2                                     (6.3)

For N odd, one can see that 2=2 must always be one of the eigenvalues. 

Once the eigenvalues are found, the individual components of the (unnormalized)
eigenvectors may be found from the recursion relation:

       p1
i =1 p2

i =2−i 
2 p3

i =2−i 
2 2−1 ⋯ pJ

i=DJ−1i
2        (6.4)

The appropriate normalization constant may be found by taking the norm of the
unnormalized eigenvector. Corresponding to each eigenvalue will be an inhomogeneous
solution I

i r  with a source function S I
i r  =−pi ⋅S r  where S r  is the last

term on the RHS of Eq. 3.19. This source will be used with the Green's function given in
Eq. 3.10 with the factor 2 being replaced by i . For S I

i r  slowly varying on

the length scale ld , i r≫1  and ib−r 2 , one finds I
i r  ≈ S i r  / i 

2 .

However, as r approaches b (i.e. the top of the core), I
i r   S i b / 2i 

2 , the
reduction by a factor of two being attributable to the fact that the source term is zero for
rb .

To finish the solution for  , we must also determine the homogenous solutions H
i

which must be added to I
i  satisfy the requirement that the inner and outer solutions for

displacement field DR be matched at r=b on an eigenvector by eigenvector basis.
Consequently,

        
G

T

 V i b  I
i b  H

i b  =−R
∂
∂ r

 I
i r H

i r  ∣r=b       (6.5)

where V ib ≡ pi⋅V t and V t ,n=∑ j=1

n−1
V j b 

1
2

V nb represents a  “net”

inductive voltage at the top of the nth core. For i b≫ld , ∂H /∂ r ≈ iH
i  / ld and

∂I /∂ r ≈−i I
i / ld , again presuming that the source term for the inhomogeneous

solution is varying on a length scale much greater than ld /i . The solution of Eq. 6.5
then gives



       H
ib = −

V ib   1− R i T

G ld
 I
i b 

1
R i T

G ld

                               (6.6)

       
V T
n=−∑i

pn
i  ×  V i b  2I

i b

1
G ld

R i T
                                         (6.7)

As before, V T
n  0 in the limit T 0 (i.e., infinite capacitance to the ground plane).

For T≫G ld /R , the total voltage at the top of core n has an asymptotic value of
V t ,n 2I b .  Defining ≡G ld /RT , we numerically computed the voltages at

the outer radius of the individual cores for 3- and 4-core systems as functions of 
presuming that both a and b are much greater than ld . Figures 7 and 8 display the ratio
V T
n / V D which shows V T

n n /N1 as 0 . For ≥1 , the top voltage can
drop to less than half its value at =0 .

Fig. 7 – Normalized voltages at the outer radius of individual cores in a 3-core cell 
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Presuming that V nr  slowly varies with r
relative to ld × max i 

−1 , deep in the core  the
radial derivative term on the LHS of Eq. 3.20 is
very small. This smallness forces Ez in the gaps to
the left and right of each core to have a nearly
equal value. This can only be true if and only if Ez

has a constant value −V D / [N1 G ] in all
the gaps. We believe that this is a general property
of core geometries like DARHT-2 accelerator cell
(see Fig. 9) for which b−a≫wG  applies,
even when the values for individual core volt-
seconds and/or the gap separations vary
significantly. In other words, the deviation from
equipartition of voltages in a multicore geometry is
strongest at the outer radial boundary and becomes
very small a few ld skin depths in the radial
interior.

Fig. 8  Normalized voltages at the outer radius of individual cores in a 4-core accelerator cell
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Fig. 9 – Side view of geometry of a
4-core DARHT-2 accelerator cell



More Generalized Solution for
V TOT a ,b ,

In the more general case where the ratio of
 (b/a) may be large and a /ld   is not
necessarily large, one must use Eqs. (3.11)
and (6.7) together with V N r  varying as
log r /a  to determine the inhomogeneous and homogenous solutions for the individual

cores. In general, this is merely a question of some straight-forward algebra and
integration, although the needed indefinite integral (for x positive)
 
     ∫dx x I 0x  ln x = x I 1x  ln x −I 0 x                                          (6.8) 

is surprisingly not available in “standard” integral compendia such as Gradshteyn and
Ryzhik. Presuming that the inner radial core boundary (r=a) is at zero potential and the
cores and gaps between them have identical dimensions, one can solve for I

i r  and
H
i r  . In Figs. 10-12 (ordered in a clockwise direction) we present the results for the

total voltage at the outer core radius for core #4 in a 4-core system as functions of
a /ld ,  with ≡G ld /RT for different ratios of (b/a). One  sees that the voltage

rapidly drops from the asymptotic value of 0.8 as  increases and that the sensitivity to
  increases at smaller (b/a) ratios.



Fig. 10-12 – Contours of 4th core voltage
normalized to VD at its outer core boundary for
(b/a)=1.2, 1.5, and 3.0 (moving in a clockwise
direction from above to the right) plotted versus 
and a/ld. The contour levels are 0.75, 0.65, 0.55,
0.45, 0.35 and 0.25 moving from the lower left
toward the upper right.

a /ld



7. Some Examples Relevant to the DARHT-2 Project 

One can use the analytical framework developed above to examine some specific
examples of interest. The first is the multicore test stand at LBNL for which individual
core voltage measurements were made in the November 2003 – February 2004 time
period. The test stand included up to four identical Metglas cores within a conducting
metal can enclosure. The cores had 4-inch widths together with inner diameters of 8.0
inches and outer diameters of 14.0 inches. Hence, the ratio b /a=1.75 lies in the
parameter region in which the variation of H   with r is moderately large. Acrylic
spacers with an effective G=1.75 of varying thickness were used between the
individual cores. Taking into account the Mylar tape between each winding, the effective
interior core dielectric is R≈8.3 . With air separating the surrounding conducting
cylinder from the outer radial boundary of the cores, T=1 . Given these parameters,
from the analysis of the preceding sections, one predicts ld≈1.7 inches and a / ld ≈1 .

Figure 13 shows the predicted ratios for V n /V D as a function of ld for n=1-4 and
T=1.0 inches. Superimposed on the separate curves are boxes representing voltage

data at the outer core radius taken by L. Reginato and W. Waldron of LBNL in December
2004 . From this data, it appears that the best fit would imply that the decay length is
somewhere between 1.1 and 1.3 inches, nearly 30% smaller than the value expected from
a “first principles” application of our analysis.

Fig. 13 – Predicted voltages in a 4-core system normalized to the drive voltage as a function of the
decay length ld  for the core parameters corresponding to the LBNL 4-core test stand. The black
open boxes refer to voltage data taken by  L. Reginato and W. Waldron.
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In Fig. 14 we show the predicted core voltages at their outer radius as a function of the
decay length ld for a 4-core accelerator cell whose geometry is that of the DARHT-2
standard cell. For each individual core, we determined its voltage solution by presuming
that all four cores had the same values of of a, b, and T . Although this is not
physically consistent, it gives a first order correction to otherwise presuming that the
average value of these quantities applied to each and every core. However, the calculation
did presume equal core-to-core gap spacing which is not true in reality (without this
assumption, the solution for the eigenvalues and eigenfunctions becomes very ugly). The
open boxes show the ratios of V n/V D as calculated by T. Hughes of MRC using the LSP
code; these results were presented at the October 2003 DARHT-2 TriLab meeting at
LANL. While these quantitative results are not expected to show agreement at the percent
level, we note that the predicted ld lies in the range 1.7-2.0”.  This is about 25% less
than that predicted by first principles (see Eq. 3.12) presuming a core-to-core longitudinal
spacing of 0.25 inches. Although the actual core-to-core spacing varies by 30% or more,
the square-root dependence of ld  upon n make it unlikely that this variation alone is
responsible for difference between predicted analytical and LSP-simulated values of
V n/V D .

Core #3

Core #2

Core #1

Fig. 14 – Predicted core voltages normalized to the drive voltage at the outer radius for a DARHT-2
accelerator cell as a function of decay length ld . For cores #2-#4 the inner radius a was set to 8.0” while

for core #1 it was 13.0”. For all cores the outer radius was set to 33.0”. For core #4, T  was twice as

great for the other cores. The black open boxes indicate results for V n /V D from LSP code results
obtained by T. Hughes of MRC.
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8. Conclusions

In this note we have shown that a simple microscopic model of core winding
magnetization can be used to help determine a macroscopic solution of the overall
inductive and electrostatic voltage distribution in a multiple core induction cell. We find
that when the core-to-outer-enclosure capacitance becomes large relative to the core-to-
core capacitance, the voltage in the outer radial regions of individual cores can deviate
strongly away that expected from a simple uniform distribution of voltages amongst the
cores. This model also can provide a framework for understanding the basis and
limitations of approximations like Mike Kang’s electrostatic field modeling (with FLUX-
2D) at LANL and various lumped circuit models.

These results are in good qualitative agreement with numerical results previously found
both by T. Hughes using the electromagnetic code LSP and M. Kang using FLUX-2D.
Our analysis also shows that such deviations exponentially decay with radius on scale
lengths of a couple inches or so for typical DARHT-2 Metglas core accelerator cell
parameters. There appears to be an ~20-35% difference between the predicted values of
the decay length as compared with the (smaller) value inferred from fits to measurements
on the LBNL test stand and numerical simulation of the actual DARHT-2 cell
configuration. A more accurate analytical solution would involve a more complicated
eigenfunction/eigenvalue solution for the actual cell geometry that would take into
account, for example,  gap separations which vary from core-to-core and  similar
variations amongst the different cores in the radial separation between each core's outer
radius and the outer accelerator cell enclosure.

We thank Lou Reginato and Will Waldron their efforts in making extensive
measurements on the LBNL Core Voltage Test Stand and being always willing to
continually adapt their setup to our constantly changing wishes. We also are pleased to
acknowledge many useful discussions with Mike Kang of LANL and Tom Hughes of
MRC.


